Skorohod representation theorem via disintegrations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skorohod Representation Theorem Via Disintegrations

Let (μn : n ≥ 0) be Borel probabilities on a metric space S such that μn → μ0 weakly. Say that Skorohod representation holds if, on some probability space, there are S-valued random variables Xn satisfying Xn ∼ μn for all n and Xn → X0 in probability. By Skorohod’s theorem, Skorohod representation holds (with Xn → X0 almost uniformly) if μ0 is separable. Two results are proved in this paper. Fi...

متن کامل

A Skorohod representation theorem without separability

Let (S, d) be a metric space, G a σ-field on S and (μn : n ≥ 0) a sequence of probabilities on G. Suppose G countably generated, the map (x, y) 7→ d(x, y) measurable with respect to G ⊗ G, and μn perfect for n > 0. Say that (μn) has a Skorohod representation if, on some probability space, there are random variables Xn such that Xn ∼ μn for all n ≥ 0 and d(Xn, X0) P −→ 0. It is shown that (μn) h...

متن کامل

A Skorohod Representation Theorem for Uniform Distance

Let μn be a probability measure on the Borel σ-field on D[0, 1] with respect to Skorohod distance, n ≥ 0. Necessary and sufficient conditions for the following statement are provided. On some probability space, there are D[0, 1]-valued random variables Xn such that Xn ∼ μn for all n ≥ 0 and ‖Xn − X0‖ → 0 in probability, where ‖·‖ is the sup-norm. Such conditions do not require μ0 separable unde...

متن کامل

Two Remarks on Skorohod Representation Theorem

With reference to Skorohod representation theorem, it is shown that separability of the limit law cannot be dropped (provided, of course, non separable probabilities exist). An alternative version of the theorem, not requesting separability of the limit, is discussed. A notion of convergence in distribution, extending that of Hoffmann-Jørgensen to non measurable limits, is introduced. For such ...

متن کامل

Open Mappings of Probability Measures and the Skorohod Representation Theorem

We prove that for a broad class of spaces X and Y (including all Souslin spaces), every open surjective mapping f : X ! Y induces the open mapping 7 ! f ?1 between the spaces of probability measures P(X) and P(Y). Connections with the Skorohod representation theorem and its generalizations are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sankhya A

سال: 2010

ISSN: 0976-836X,0976-8378

DOI: 10.1007/s13171-010-0008-3